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Thermodynamic consistency within the density-wave theory of freezing is briefly dis- 
cussed. The non equivalence of different routes to calculate the change in a thermody- 
namic quantity upon freezing is related to the approximations involved in practical 
calculations. In particular, a new way of calculating entropy and voiume changes is 
proposed. It is shown that this new route avoids an unphysical feature of the entropy 
formula previously proposed by other authors. The freezing of hard spheres is discussed 
as an illustration. 

The density-wave theory of freezing, first formulated in the pionering 
work of Kirkwood and Monroe,' has received renewed attention 
during the last few years. Ramakrishnan and Yussouff reformulated 
the theory in terms of the direct corelation functions, avoiding the 
explicit presence of the interparticle interaction potential. By doing so, 
they shift the emphasis to the structural properties of the system and 
give a unifying description of the liquid solid transition in simple 
liquids. The density-wave theory of freezing involves the expansion of 
the appropriate thermodynamic potential of the ordered phase around 
that of the homogeneous liquid. This requires: i) the knowledge of the 
liquid structure; ii) a functional expansion in which direct correlation 
functions of any order appear; iii) a Fourier representation of the one- 
body density p(r). In practical appl i~at ions,~-~ for a given description of 
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the liquid structure, one has to truncate the expansion in both ii) and 
iii). 

In the present note, we discuss the thermodynamic inconsistency 
which arises in the theory because of the approximations mentioned 
above. This means that different routes to calculate the same thermo- 
dynamic quantity may give different results. Such a problem is well 
known in the case of approximate theories for the liquid 

For freezing with finite volume change, one can calculate the entropy 
change per particle (As) at least in two different ways. Even within the 
usual of relating As to the difference in grandcanonical 
potential between the two phases, the formulae published hitherto are 
incomplete or in error. We therefore first present the correct expression 
within this approach. We then propose a new method of calculating As 
which, in particular, avoids an unphysical dependence of the entropy 
change on the mass of the particles yielded by approximate calculations 
carried out within the previous approach. Moreover an additional 
manner to calculate the volume change on freezing, through thermo- 
dynamic derivatives, is obtained. This can be used to check the degree 
of internal consistency of a given calculation. 

The essential equations of the theory can be written, following 
Haymet and Oxtoby," as 

where 

CG, = n dtc(r)ei""F, ( 5 )  i 
and pc, is the Fourier component, at the reciprocal lattice vector Gi, of 
the density in the ordered phase 

Above, CJr) and C ,  are the one body direct correlation functions of the 
solid and of the liquid and q is the fractional volume change on freezing. 
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Equations (1) and (2) give, respectively, the difference in pressure and in 
chemical potential between the solid and the liquid phase, at  given 
temperature T.  They are expressed in terms of properties of the liquid 
phase, namely its density n and its direct correlation functions. We 
stress that in Eqs (1) and (4) direct correlation functions of any order 
appear, starting from the two body one c(r).  The set of order parameters 
{po , }  and q, at coexistence, must satisfy the equilibrium Eqs (3) under 
the condition that the pressure and the chemical potential differences 
should vanish, A W = Ap = 0. This fixes the freezing line (nf, Tf) once 
the liquid structure is known as function of n and T,  and gives the 
fractional volume change q and the Fourier components {pa,) of the 
density in the coexistent solid. 

The change on freezing of a thermodynamic property such as the 
entropy per particle s can be calculated from the slopes of A W(Ap) near 
the freezing point. These can be obtained, in turn, by solving Eqs (3) 
under the only condition Ap = 0 (A W = 0). In terms of A W the entropy 
change per particle can be written as 

where to obtain the expression in the second row we have used the fact 
that from Eq. (1) A W  is a function of the temperature T and of the 
density n of the liquid. The contribution -?sJ(l + q)  to the entropy 
change in Eq. (7) originates from the fact that, in the grandcanonical 
ensemble, the number of particles in the volume V for the crystalline 
phase, N , ,  is different from that for the liquid phase, N,,  ( N ,  - N J /  
N ,  = '1. Such a term, which has been neglected in previous f o r m ~ l a e ~ * ~ ~ ~  
for As, has the unpleasant feature that it contains the mass of the 
particles. This appears in the ideal part of sI- However, there is another 
term in As which is proportional to s p  By utilizing thermodynamic 
identities, in fact, Eq. (7) can be modified to read 

Av - - K B T  __ a A w l ]  (8) 
T + tl aT n n f . T f  

with Av = us - vl, the volume change per particle and 
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The entropy per particle is now decomposed, in Eq. (8), into three 
terms. The first one contains all the dependence on the mass m of the 
particles. Since As cannot depend on m, an exact calculation must yield 
c1 = 1. (We notice that, if the first term vanishes due to a = 1, one 
recovers the partitioning of the entropy change into a volume term" 
plus a remainder as proposed by Tallon.' 2, Nevertheless, this will not 
happen in general for approximate calculations, as we have checked in 
one case. In his model study on the freezing of hard spheres Haymet3 
gives AW(n) around n f  so that ct can be easily evaluated to be 2.3. We 
conclude that Eq. (7) or (8) does not provide a convenient way of 
evaluating the entropy change. 

Let us turn now to the other route to evaluate As. By exploiting the 
dependence of Ap on n and T one immediately gets 

This new formula does not contain any dependence on the mass of the 
particles. Moreover from the slope of Ap around the freezing point it is 
possible to obtain an alternative thermodynamic equation for the 
fractional volume change 

n f A v =  --= II 
n [*I ] =..[-I JAp --I an ] . (11) 

+ ap T n f , T f  an T a p  T n f , T f  

We stress that the comparison between q from Eq. (1 1) and from the 
coexistence conditions (Eqs (1)-(3) with Ap = A W  = 0) provides a 
simple check on the internal consistency of an approximate calculation. 
Of course, in an exact calculation they would coincide. Finally, by 
combining Eq. (10) and (1 1) the entropy change can be written as 

From inspection of the equation above it appears clear that, by using 
Ap, the entropy change is naturally decomposed into a volume term 
plus a remainder, as it was previously suggested." We have already 
noticed that q and hence Av can be calculated in two different ways 
which will be not equivalent in approximate calculations. The same will 
happen for As from Eq. (12) depending on how At7 has been calculated. 

To illustrate the foregoing discussion we reconsider below the 
freezing of hard spheres. We have carefully repeated Haymet's 
 calculation^.^ Having reproduced his results, we have then calculated 
PAp(n) about nf. (We recall that for hard spheres PAp does not depend 
on the temperature T and hence aAp,/JTlnf = 0.) In terms of i?Ap/anlnf, 
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we have calculated the entropy change and the fractional volume 
change from Eq. (10) and Eq. (1 l), respectively. We find As = - 1.9KB 
and q = 0.15, whereas from the coexistence condition one obtains 
q = 0.06. These values compare favourably with the computer simula- 
tion results As = - 1.2K, and q = 0.10. The agreement, however, is still 
only semiquantitative. Though the two alternative values obtained for q 
bracket the one yielded by computer experiments, the discrepancy 
between them is still appreciable. In this respect we should also 
comment about the presence of a third value of q on such calculation a 
la Haymet. In fact, for a given crystalline structure, the reciprocal lattice 
vectors of the solid phase are fixed by the location of the first peak in the 
structure factor of the liquid phase. In principle, they should be 
calculated in a consistent manner with the fractional volume change q 
from the coexistence condition. However, we have found it impossible 
to force such a consistency without losing the physical solution to the 
freezing problem. 

In summary, we have discussed above the problem of the internal 
thermodynamic consistency within the density wave theory of freezing. 
We have argued that inconsistency arises because of the approxima- 
tions that one has to make in practical calculations. Among these, one 
should also mention the approximate character of the theory chosen for 
the liquid structure, in particular its possible thermodynamic inconsis- 
tency. We have examined in detail the cases of the entropy change and 
of the volume change on freezing. We have shown that the alternative 
way we propose to calculate the entropy change avoids an unphysical 
dependence on the mass of the particles yielded by the route previously 
considered. We also suggest that the thermodynamic formula for the 
volume change, that we have proposed above, could be used to check 
the degree of internal consistency in practical calculations using the 
density-wave theory of freezing. 
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